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Abstract. The electronic structure of the Z5 {210} grain boundary in silicon was calculated
by the first-principles, self-consistent, linear muffin-tin orbitals/tight-binding representation
method on the basis of the atomic structure simulated by the bond orbital model. The
calculated electronic structure is found to have localized and resonant defect states, which
are caused by the distortions of the atomic structure at the grain boundary. Sharply localized
states in the pseudo-gap were observed along with splitting of s states and dissipation of s—p
mixed states. A rehybridization effect was revealed at the grain boundary on the atoms with
strongly distorted bonds. However, there are no states inside the band gap. The increase of
the s-state occupancy in comparison with the p-state occupancy appeared on the atoms with
strongly distorted bonds at the grain boundary. The relationship between local electronic
structure and local arrangement of the atoms is discussed.

1. Introduction

Recently there has been increasing interest in the investigation of the atomic and
electronic grain-boundary structure in semiconductors, Most such investigations have
been executed with the use of the semi-empirical tight-binding methods. For example,
the recursion method was used for the calculation of the electronic structure of the 3
{211} and =5 {310} grain boundaries in silicon [1, 2] and the £3 {211} boundary in
germanium [3]. A number of grain boundaries in silicon were investigated with the use
of the extended Hiickel method in the cluster approach [4, 5]. The Chadi semi-empirical
tight-binding method [6, 7] in the framework of the supercell technique was applied for
the 3 {211} [8], £5 {310} [9] and Z9 {21 1} [10] boundaries in silicon.

Itis very convenient to use such methods for the treatment of a system with a complex
and large unit cell, owing to the simplicity of the computational procedure. However,
they have certain deficiencies; in particular, the free parameters of the method are fitted
by suitable properties of a perfect crystal. In the case of a distorted lattice, a considerable
change in the electron density is possible in the crystal and such an approach becomes
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rather approximate. Moreover, it is obvious that the semi-empirical method can be
used for the structure defect calculation of experimentally well studied crystals only.
Therefore, a more general and correct investigation of the electronic structure of crystal
defects is provided by the ab initio methods of solid-state theory.

In these schemes the only input parameters are the atomic number and crystal
structure, in contrast with the semi-empirical approach. However, the use of the con-
ventional ab initio methods, such as the Korringa—Kohn-Rostoker (kxR) method [11]
and augmented plane-wave (APw) one [12], for the investigation of complicated defect
structures is limited to a small size of supercell because of the extremely large computer
resources needed. The modern, generalized linear muffin-tin orbital (LMTO) Green
function method for the calculation of the interface electronic structure was proposed
in [13-15]. Unfortunately, the application of this technique is limited by the con-
sideration of the join between two phases with an ideal structure at the interface. The
effects connected with the relaxation of the atomic structure at the interphase boundary
are omitted. Thus, obviously, it is impossible to use it for grain boundaries, where the
real atomic structure of the interface is important.

An attempt to use the first-principles method based on the density-functional theory
(DFT) within the local-density approximation (LDA) in the framework of the local orbital
basis and the norm-conserving pseudopotential [16] was made in {17] for the Z9 {221}
grain boundary in silicon. However, this method provides for an inadequate description
of the fundamental gap of an ideal crystal, causing a significant underestimation of both
the direct and band-gap width [16, 17]. This disadvantage is critical in the case of the
investigation of the electronic structure of grain boundaries, where the behaviour of the
electronic states in this region is most important. Moreover, this method estimates the
bond energy in an ideal crystal of silicon with an error of 10-17% (depending on the type
of orbital basis set) [16], which can cause a significant error in the determination of the
grain-boundary energy.

One of the most perspicacious methods for the calculations of the electronicstructure
of defects is the LMTO method in the tight-binding representation (LMTO TB method}
developed by Andersen [18, 19]. This method provides for: (i) a high speed of cal-
culations that allows one to carry out a first-principles investigation of complicated
objects; (ii) a high precision in the determination of the parameters of the band structure
(accuracy of about 1% of the bandwidth) and cohesive energy; and (iii) a minimal
thickness of the supercells of an artificial crystal for the imposition of periodicity in the
direction normal to the boundary plane. This is possible because of the strong localization
of LMTO TB basis functions.

In this paper we present the first application of an efficient self-consistent ab inific
technique based on the LMTO TB method using a supercell geometry for the calculation
of the electronic structure at relaxed interfaces on the example of the £5 {210} grain
boundary in silicon. We have chosen this boundary as an object for our investigations
for the following reasons. Firstly, there is no reliable information on its electronic
structure. Secondly, this boundary together with the =5 {3 10} boundary, investigated
in {2, 9], determines basal structure units in the class of symmetric {1 0 0) boundaries [20].
So, itselectronic structure may be characteristic of the essentiaj features of boundaries of
this class.

2. Method

2.1. The atomic structure simulation

The determination of the equilibrium atomic geometry at a grain boundary requires a
value of the total energy calculation such that methods with a high computational
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complexity cannot be used. So we use a simple bond orbitai model for the computer
simulation of the atomic structure [21-23]. This model possesses an ability for high speed
of computations and provides for a realistic description of the grain-boundary structure
in silicon [24]. The computer simulation of the 5 {2 10} atomic structure included two
stages. In the first stage the rigid-body translation was determined, i.e. the mutual
position of the grains corresponding to the minimum energy was obtained. The relative
coordinates of the individual atoms were not changed. The component of the rigid-body
translation in the direction normal to the boundary was equal to 0.02 nm with an accuracy
0f 0.005 nm. In the direction of the tilt axes {1 00} it was equal to 0.042 =+ 0.005 nm. It is
necessary to note that the shifi in the boundary plane disturbs the initial symmetry of
the boundary plane.

After a rigid-body translation, an atomic relaxation was carried oui by a static
procedure with the use of the method of conjugated gradients [25]. The thickness of
the operational volume, in which the changes of indivicual atomic coordinates were
calculated, in the direction normal to the boundary plane was equal to 4 nm. We have
used the conjunction with the {210} planes of an ideal crystal, which can be shifted by
an interaction with the operational volume, as the boundary condition in this direction.
Inthe boundary plane, periodic boundary conditions [25] were used. We have considered
the same periodicity for the grain-boundary structure as that for the {210} planes in a
single crystal. So, we did not take into account the possibility of reconstruction of grain-
boundary structure with increase in the periodicity. The relaxation was completed when
the maximum value of the gradients of the atomic energy became less than 0.1 eV nm ™,

The simulated atomic structure is shown in figure 1. It is characterized by the absence
of dangling bonds, the maximum bond tension of 3.9% between atom 2 and atom 27,
and the maximum deviation of the angle between the interatomic bonds at atom ( {of
19.5°) from the single-crystal value.

2.2, The method of electronic structure calculation

The first-principles calculation of the eiectronic structure of a solid can be divided into
two parts, i.e. the solution of the Schrédinger equation with a definite crystalline
potential to determine the energy band structure and eigenfunctions, and the con-
struction of the crystalline potential. The development of the crystalline potential for a
many-electron system is a rather complicated task, and only the density-functional
formalism based on the Hohenberg and Kohn theorem [26] in practice gives an accept-
able method of self-consistent solution of this problem. It is a formidable computational
task and for objects with a complex atomic structure the problem of optimization of the
algorithm for its solution becomes very urgent. In particular, the choice of the most
suitable type of basis wavefunctions is the way to optimize the computational algorithm.
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The basis functions of the LMTO TB method provide for the most effective solution of
this problem because of their linearity (independence on energy) and short range, which
is essential for the calculation of the electron structure of defects by the supercell
technique. These extremely compact basis functions were obtained by an exact trans-
formation of the conventional LMTO basis functions [19]. They decrease exponentially
with relative interatomic distance instead of as the inverse power in the case of the LMTO
basis functions. The size of the supercells, modelling the structure of crystals with defects,
can be decreased to a great extent, so the first-principles seif-consistent calculation of
the electronic structure of defects is possible with the use of the LMTO TB method.

It is convenient to use the atomic-sphere approximation (Asa) in the framework of
the LMTQ scheme. In this approach, each atom is surrounded by a sphere with volume
equal to that of the Wigner-Seitz cell, and it is assumed that all space can be filled with
these spheres, the overlapping of spheres of different atoms being neglected. The latter
means that, effectively, there are no interstitial regions. In practice, the errors in the
determination of the electron energy in the framework of the Asa does not exceed 1%
of the width of the corresponding band. However, this approximation is valid only in
the case of close-packed structures (FCc, BCC and HCP), For the calculation of electronic
structure in the case of open structures, such as the diamond structure, it is necessary to
introduce so-called empty spheresin the interstitial sites of a crystalline lattice in addition
to spheres containing ions. These spheres contain no ion cores, but have some electron
charge, as the self-consistency is achieved. Thus, the application of empty spheres is the
practical tool for the more correct consideration of electron density outside the atomic
spheres [19]. For crystals with a diamond structure, the empty spheres are placed at the
tetrahedral void sites, so a close-packed structure of the BCC type is formed. Whereas
the AsA serves well for crystalline silicon [19], this is not necessarily so for the grain
boundaries because of the distorted and more open structure than in a perfect crystal.
Taking this fact into account, we have adjusted the positions and radii of empty spheres
inthe grain-boundary region so that the excess volume was taken into consideration and
large sphere overlaps were avoided. Sphere radii at a grain boundary change in the range
of (0.999-1.06) Rg; only (where Rg; is the empty sphere radius in an ideal lattice) because
of a small distortion on the investigated boundary, atomic sphere radii being constant.
Therefore, the obtained structure is like the closely packed one and in this case the asa
could be quite accurate. A similar approximation (but without sphere radii adjustment)
was used in {27] for amorphous silicon, which is characterized by distortions of the bond
length (=3.1%) and deviations of the angles between the bonds (=17.7°) similar to the
maximum ones in the structure of the investigated boundary. ht has been shown that
even this approach provides for the description of the electronic properties of amorphous
silicon quite well. Also, this approximation (but without the self-consistent procedure)
has been used for the study of the structure and energy of the 25 {1 00} grain boundary
in copper {28]. Hence we expect our approach to be correct enough for the calculation
of the grain-boundary electronic structure.

In the framework of the LMTO TB asa method, the basis functions are constructed
from solutions of the Schrodinger equation inside the Wigner—Seitz spheres. The mini-
mal basis set for a covalent crystal in this method contains s, p and d orbitals at the atomic
sites and s and p orbitals at the interstitial sites. However, it was shown [29] that it is
possible to use a smaller basis set to calculate one-eleciron energies and wavefunctions
without a significant decrease in accuracy if higher partial waves were taken into account
by a procedure equivalent to Lowdin partitioning or block perturbation theory [30].
This procedure allows one to reduce the size of the matrices that are diagonalized and
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therefore decrease the computational time by an order of magnitude in comparison with
the conventional LmMTO method, which is extremely important for the calculation of the
electronic structure of grain boundaries.

We now briefly describe the practical scheme that we used for the calculation of the
grain-boundary electronic structure in silicon. A detailed description of the LMTO TB
method is given in [18, 19]. The basis orbital in the T8 representation, y&, (r — R),
centred at lattice site R and with the abbreviation L = {{, m} for the angular momentum
(1) and azimuthal {(m) quantum numbers, is a superposition of the conventional LMTO,
and is given by the one-centre expansion:

)" = P+ 2 [PF LR (1)
where |x§,)* extends over all space, while [®g,} and |®%,.) are non-zero only in their
own atomic spheres. Here @, (rz) = Og/(rp) Y (Fr), where P, is the regular solution of
the radial Schrodinger equation in the sphere for the fixed but arbitrary energy £,
chosen at the centre of interest; Y, are the spherical harmonics; 7 = (r — R) and
rg = |rg|. The ®p, is normalized to unity in its sphere as

5
@.[0)= [ oo () dr= | 10O dr=1 @
) 0
where s is the radius of an atomic sphere.
_ The &, is defined as a superposition of ®g, and its energy derivative function
(I)RL:
OFp(rz) = Parlre) + Prulrrofy (3)

The values of the potential parameter 0§, (see appendix) were chosen to make the tight-
binding muffin-tin orbital energy derivative vanish.

The matrix #§; (bere and in the following, in a matrix notation the subscript R is
dropped) in (1) was determined so that the TB LMTO is continuous and differentiabie on
the sphere:

hiL = ~PL(PY)™ + (PY)TSE, (P1) ™2, @
The values P¢ and P§ are the potential parameters (diagonal matrices), which are

related to the conventional ones as given in the appendix.
The screened structure matrix 8§, is determined through the Dyson equation:

8¢, =80 + 800, 8% = ai' (e — 817 - aer! (3)

where S, is the conventional canonical structure matrix [18, 31], which is Hermitian
and independent of the scale of the structure; @, is a diagonal matrix with elements
usually independent of R, and a;, = 0 for ! = 2. The set of ‘screening numbers’ is found
by the trial-and-error method [19] in such a way that the localization of 5%, is the best:
a, = 0.348485, a, = 0.053030, oy = 0.010714,

Now, to obtain a down-folded basis it is necessary only to go to energy-dependent
screening coefficients S(£). Using the subscript notation L for the lower partial waves
and H for the higher partial waves (in the case of silicon H = p for the empty spheres
and H = d for the atomic sphere), it is specified by [29] that

Bo=a. Bu(E) = [PH(E)]™ (6)
where PY,(E) is a conventional potential function [18]. The transformation of the one-

centre expansion (1) to the S(F) representation from the original & is given by sub-
stituting the structure matrix §%, by the structure matrix S{#? defined as
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SHE) = 82, + STuFE(E)SE,

(7)
SHD = PH(E)F5u(E)SH.
where F},(E) is the ‘higher-block Green function’ [29]:
i (E) = [PR(E) ~ Stp] ™. (&)
Equation (4) in 8( E) representation is
REE = —PE(PE)Y + (P1)RSLD (Pr) 17 ©
and in this case the basis function is found to be
~1) 1

Here I'%, is the potential parameter (see appendix). The energy dependence in
expressions (6)-(10) may be omitted by fixing £ = E, 4

Hamiltonian and overlap matrices can be obtained from (10) using the condition
E = E_yin the form:

O, = (I + hfL03)(ofhE, + I+ hiLp hE. + (PF) 2S84 (1/TE)SEL(PE) ™
11
and -
HY, =hf, +hi ofht, + I+ hE LOL)EvL(oLh + 0+ B E, p b,
+ (PY) 288 4 (VE/TH)SE. (PF) 17 (12)
where / is the unit matrix, V¥§; and p, are defined in the appendix. One should note that
functions defined by (10) are not the LMTO, because

a
SELEN| =0 (13)
However, the accuracy of the determination of one-electron energies of lower partial
waves is of the same order as that in the LMTO TB method. The inaccuracy for the higher
partial waves is slightly more; however, the error does not exceed (£ — E,)°. A detailed
consideration of this problem is given in {29].

It is necessary to determine the charge density at each step of the self-consistent
calculation in the framework of DFT. It is possible to calculate it with the use of the
spherically symmetric part obtained from the partial-wave expansion in the Wigner—
Seitz (ws) sphere, Such an approach is convenient because it provides for a sufficient
accuracy and the full, non-spherically averaged charge density has so far been difficult
to represent throughout the cell and is not needed during a self-consistent calculation.
The AsA total energy normally deviates from the proper total energy only by hundredths
of a rydberg [19].

The distribution of the charge density of the valence electrons in the atomic sphere
R.i.e. pg(r), in this approach can be described as

Ep
ox(r) = {‘;2 [ oNaEIRR . By aE (14)
0

where @y, isthe solution of the radial Schrddinger equation for the energy E; and 2Ny E)
is the local partial density of states determined by

Nef(E) = (WZ j CHS(E - E,(K)) dk (15)

where £ is the volume of the unit cell and £ (k) is the one-electron energy of state j at
point k. The expressions for the coefficients C , are given in the appendix.
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Table 1. The main characteristics of the electronic band structure of single-crystal silicon,
obtained with the use of different exchange—correlation potentials.

Type of potential® Valence

Band-gap  band Width of direct
Variant  Atomic Empty width width gap at I point,
no. spheres spheres (eV) (eV) [is = Tas (V)
1 Vir Vez 0.52 12.28 352
2 Vay Ven 0.63 12,23 3.50
3 Ve Vi 0.74 12.21 3.54
4 Ve Vs 1.14 12.03 3.52
Experimental data [38] 1.17 12506 3.4

4 Vpp Perdew-Zunger exchange—orrelation potential.
Vg Barth-Hedin exchange—correlation potential.
Vs Slater exchange-correlation potential with coefficient & = 0.7.

Thedetermination of the exchange—correlation potentialis a very important problem
in the calculation of the electronic structure of semiconductors. The point is that, if one
investigates a semiconductor electronic structure in the framework of bET, then the well
known problem of a dielectric gap appears. This problem consists of the underestimation
of the band-gap width by about 40-60% , which arises because of the substitution of the
non-local self-energy operator by the local exchange—correlation potential {32, 33). The
contemporary state of theory does not allow one to determine unambiguously the form
of the local exchange—correlation potential most suitable for the calculation of the
electronic properties of solids. The only way to choose the potential type is via com-
parison of the calculated results with the experimental data. A numberof approximations
for the exchange~correlation potential have been proposed, and each of them is correct
only for a definite type of electron charge density distribution. The open structure of
silicon is characterized by a strongly non-uniform distribution of charge density. It
changes rapidly in the atomic spheres and becomes approximately uniform and small in
the empty spheres. So, it is reasonable to use different types of exchange—correlation
potential for the atomic spheres and empty spheres, and a uniform distribution of
electron density with small values is well described by a Slater-type potential [34]. One
should note that similar approaches have been used for the investigation of the electronic
structure of intermetallic compounds [35] and semiconductors [36].

We have carried out test calculations of the electronic band structure of a perfect
crystal of silicon (with lattice constant equal to 5.43 A) using different forms of the local
exchange~correlation potential for both the atomic spheres and empty spheres. We
continued the iterative calculations until self-consistency with AE,, < 5 X 107> eV was
reached (AE,, is the total energy per unit cell}. The integration was carried out by the
method of tetrahedra [37] through the 50 &-points of the 1/48th irreducible part of the
Brillouin zone. The results of the test calculations are given in table 1.

The levels of the one-electron energy are seen to be strongly sensitive to the form of
the exchange-correlation potential. Consideration of the results obtained with the
variants 1 and 2 of the exchange-correlation potentiais (table 1} shows that the width of
the direct energy gap at the point I is in good agreement with the experimental value,
while the estimation of the band gap has significant discrepancies in comparison with
the experimental data (the underestimation of the band-gap width is 55.6 and 46.2% for
variants 1 and 2 of the exchange—-correlation potential, respectively).
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Table 2. One-electron energy of single-crystal silicon at the characteristic points of the
Brillowin zone relative 10 the energy of the top of the valence band ('}, point).

Present work Theory [41] - Experi-rﬁehi {38]

Point (eV} (eV) {(eV)

o g TR T TTAFANT ¢ TTIPTTEET] ep e aih
r, - 12,03 -11.99 —-12.520.6
[ 3.52 2.50 3.4
r 377 iz 4.2
Xy -7.93 ~7.84 —
s -2.79 ~2.88 -29=202
Kie 1.23 ’ 0.55 1.3
L; -9.62 . ~9.64 ~9.3+£04
Ly, -6.93 ~-7.04 ~67x0.2
Ls -1.03 -1.21 -1.2202
L 177 1.41 21 =015
L 3.85 3.26 415901
Band-gap

width (eV) .14 0.41 117

The application of the Perdew—Zunger [39] or Barth-Hedin [40] exchange—cos-
relation potentials for the atomic spheres along with the Slater potential {34] for the
empty spheres (variants 3 and 4 in table 1, respectively) leads to a significant decrease
in the error of the estimation of the band-gap width. In the case of variant 4 (table 1) the
error amounts to 2.5%, which represents a good fit with the experimental data.

This effect is caused by the increase of the potential inside the empty spheres owing
to the increase of the correlation part in the exchange-correlation potential, if the
Perdew-Zunger or Barth-Hedin potential are substituted by the Slater one. Asaresult,
the potentjal barrier between the atomic spheres and empty spheres increases and this
effect causes localization of wavefunctions inside atomic spheres and both narrowing
and lowering of electronic bands. The opposite effect in the empty spheres is negligible.
As a result, the width of the valence band decreases, it displaces in the direction of low
energies and thus the width of the band gap increases. The decrease in the valence band
width is rather small, and all the obtained values correspond to the experimental
estimations. Itis necessary to note that the effect of the application of the Slater potential
for the empty spheres in variant 3 of the potential set (table 1) is lower than in variant 4.
Hence, the application of the combination of different exchange—correlation potentials
for the atomic spheres and empty spheres provides for the increase of the accuracy of
the band-structure determination for silicon owing to a more correct description of the
electron density distribution in the unit cell.

The one-clectron energies in silicon in several points of the Brillouin zone obtained
with the application of the Barth-Hedin exchange—correlation potentials for the atomic
spheres along with the Slater potential for the empty spheres are given in table 2. The
energy of the state I's; (the top of the valence band) is taken as the zeroth energy. The
results of the presented work are seen to be in better agreement with the experimental
data than that obtained in [41] with the use of an exchange—correlation potential of
Gaspar-Kohn-Sham type [42]. The calculation of the cohesive energy per atom with
the use of these exchange—correlation potentials has given us the value of 4.8 eV, which
corresponds to =3.7% overestimation in comparison with the experimental data.

The self-consistent calculation of the grain-boundary electron structure was carried
out up to the same level of self-consistency as for the test calculation with the Barth—
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Figure 2. The 1/2 irreducible part of the Brillouin
zone of the supercell used for calculation of the elec-
tronic structure of the £5{2 1 0} boundary: I, (9,9, 0);
11, 2zfa(4/5, = 1V/5, 00; 11, 2z /a(6/5, 0, O,

Hedin exchange—correlation potentials for the atomic spheres and the Slater potential
with & = 0.7 for the empty spheres.

In the supercell method the periodicity normal to the boundary plane is imposed in
addition to the two-dimensional periodicity in the boundary plane. The supercell used
for the calculation of the grain-boundary electron structure had an inversion centre and
contained two oppositely misoriented Z5 {2 10} grain boundaries spaced by 16 atomic
planes. Thus, a fully periodic structure was obtained. The Brillouin zone of the supercell
obtained has the shape of a hexagonal prism. The irreducible part of this Brillouin zone
is shown in figure 2. Choosing the thickness of the supercell in the present work we took
into account the value of the radius of vanishing of the basis functions of the LMTO TB
method. For silicon, the LMTO TB basis orbital extends to third-nearest neighbours {19],
and we choose the thickness of the supercel! so that the grain-boundary cores in it were
separated by a region of the silicon lattice with thickness exceeding two radii of the third
coordination sphere; thereby one ensures the absence of a region of mutual influence of
grain boundaries in the supercell.

The integration was carried out through the 29 k-points of the 1/2 irreducible part of
the Brillouin zone (figure 2) in the plane £, = 0 by the triangle method with linear
interpolation, because the preliminary test calculation had shown a negligibly small
dispersion along the k, direction (about 1077 Ryd). The test calculation with a varying
number of k-points has shown that the integration error does not exceed 107 Ryd.
Therefore, we believe that the calculation of the main electronic properties of a grain
boundary was carried out accurately enough.

3. Results

The [ocal density of states is important for the understanding of numerous properties.
In particular, being a local characteristic for an electron structure it is more sensitive to
different local distortions of the regular crystal lattice order and enables us to carry out
a more detailed description of localized and resonant defect states in comparison with
energy band structure. In figure 3 the data for the local density of states at atoms 0-3, 5
and 8 are presented. Though the rigid-body translation disturbs the symmetry of the
boundary piane, the atomsin pairs 1and 17,2 and 27, etc (figure 1) became inequivalent,
but the local density of states on them differs insignificantly. in figure 3 the data for the
atoms on the side of the boundary characterized by the strongest distortions of the
atomic coordination are presented.

The following features of the local density of statesin the valence band were observed:

(i) A splitting of the s peak occurs into peaks 1 and 2 (figure 3) with a shift of peak 2
in the direction of increasing energy and peak 1 in the opposite direction. The splitting
of the s peak is the strongest on atom 0. This effect is weaker on the neighbouring atoms
and obviously exists mainly due to the interaction with atom 0.
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Figure 3, Local densities of states N on atoms 0 (a), 1 (8}, 2 (), 3 (d), 5 (¢) and 8 (f), as

numbered in figure 1. Dotted curves show the density of states in the perfect crystal.
Numbered state peaks are shown by arrows.



Figure 4. Interfacial electronic structure near the
pseudo-gap of a single crystal. The projections of the
bulk bands are shaded.

(ii) Sharp and high s-type peaks ( peaks 3 and 4, figure 3) appear in the region of the
minimum of the state density related to a pseudo-gap in a single crystal (figure 4). In
figure 4 the fragment of the band structure of the examined supercell in this energy
region is shown. We can see two defect states with energy equal to that of peaks 3 and
4. The state of peak 3 is situated closer to the edge of the pseudo-gap (to the electron
state of a single crystal) and has a lower energy dispersion.

(iit) A dissipation of the s—p hybridized peak isseen along with asignificant reduction
of the maximum density of states. In this energy region low s—p peaks were formed up
to the low-energy edge of the p peak of a single crystal. According to [27], such a
character of the distribution of the density of states is also typical for amorphous silicon.

(iv) A number of small sharp peaks are observed in the valence band, including
peaks with p symmetry near the top of the band ( peaks 5 and 6, figure 3).

All effects observed in the local density of states are decreasing, moving away from
the grain boundary. So, atom number 8 has almost the same density of states as a single
crystal with a slight difference. It seems to be related to the different number of points
used for integration through the Brillouin zone in the cases of the grain boundary and
single crystal.

We analysed the dependence of the state density with fixed energy values versus the
distance from the grain boundary. Figure 5 shows that the states of peaks 3 and 4 are
localized defect states. Their state density rapidly decreases with distance from the atoms
on which they are formed. The state of peak number 3 is localized on atom number 0.
This atom is characterized by the highest angle deviation of the bonds from the single-
crystal value. Peak number 4 is associated with atoms number 2 and 27, which have the
strongest distortion of the bond length with the neighbours in comparison with the ideal
bond length.

The heights of peaks 1, 2, 5 and 6 decrease slightly oscillating with distance from
the grain boundary. Such behaviour is characteristic of resonance states. The spatial
decrease of the heights of peaks 1, 2, 5 and 6 agrees with the positions of the cor-
responding states in the energy region of the filled part of the single-crystal valence band.
The state of peak 5 is localized on atoms 3 and 37, and peak 6 has highest intensity at
atoms 2 and 27,

The charge distribution at the Si atoms is shown in figure 6. The variation in this
quantity should be a good measure of the charge fluctuation in a grain-boundary structure
from one atom to another because the atomic sphere radii do not change [27]. At the
same time, such a comparison of the charges in the empty spheres does not have any
meaning because their radii are different. It is seen that the deviation of the charge value
at the atoms of the grain boundary from that of a single crystal is about +0.1e, where ¢
is the electron charge. A positive charge exists on the Si atoms in a single crystal owing
to the transference of a part of the electron charge from atoms to the states of empty
spheres. An excess negative value was found on atoms 0, 1~ and 1 with a value of the
bond tension of 2.1% and a strong distortion of the angles between the bonds. In
contrast, at the atoms 2, 27, 5 and 5~ with a strong tension of bonds the lack of electron
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Figure 5. The dependence of the local density of states N with fixed energy values £ on the
positions of the atoms in the grain-boundary structure: (a) peak 1, (@) £ = =0.225 Ryd,
(O) E=-0.20Ryd, (+) E=~0175Ryd: (&) peak 3, {Q) E=0.07TRyd, (+) £=
0.0725 Ryd, (@) E = 0.075 Ryd; (¢c) pezk 4, (O) E = 0.09 Ryd, (+) £ = 0.095 Ryd, (@) E =
0.10 Ryd, (d) peak 5, (O) E = 0.555 Ryd, (+) E = (. 560 Ryd, (@) £ = 0.365 Ryd; (¢} peak
6, (O) E=0.585Ryd, (+) £=10.590Ryd, (@) F =0.595Ryd. NA = number of atom

(figure 1).

charge is observed. The maximum deviation of the charge from the single-crystal value
isobservedatatom 5, which hastension ofthe bond with atom 2 0f3.2%. The dependence
of charges of the atoms on distance from the boundary is slightly asymmetric. Itis related
to the asymmetry of the atomic structure caused by the rigid-body translation in a
boundary plane.

The charge values almost converge to the perfect crystal value at the eighth plane.

On the basis of the dependence of local state densities and charge value on distance from
the grain boundary, we can say that the region of the electronic distortions associated
with this boundary is about 12~14 atomic pianes (6-7 atomic planes on each side of the
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Figure 6. The charges of the atomic spheres (g, in the
0.2 grain-boundary structure in terms of electron charge
e. The broken line shows the charge of Si atomic
8 & & 2 6 T UwWTg g spheres in a single crystal. A4 = number of atom
NA {figure 1).

Table 3. The ratio of occupancy values of the p states and s states (f,,,) on atoms at the Z3
{210} grain boundary.?

Numbers
ofatoms 0 1 2 3 4 5 6 7 8

fos 157 163 150 155 162 151 158 160 1.63

* fois ina single crystal is equal to 1.64.

grain junction plane}, or about 1 nm. This value is more than the geometrical boundary
thickness, but much less than the electrical thickness of electrically active boundaries
[43].

The formation of additional defect s states at the boundary leads to a change of
hybridization state of several atoms. The ratio of the eccupancy of states of p symmetry
to the occupancy of s-symmetry states {f,,;,) on atoms 0-8 is given in table 3.

It is seen that both the excess charge on atom 0 and the lack of charge on atoms 2 and
5 were caused mainly due to the changes in the relative occupancy of the s-symmetry
orbitals. Uniform changes of occupancy of the p and s states take place only on atom 1.
A similar behaviour of the f,; was observed in the X3 {2 11} grain boundary in silicon
[2]. This behaviour confirms the assumption that the bonding of atoms in the region of
a highly distorted structure is provided by the enhanced occupancy of the spherically
symmetric s orbitals [44]. The same phenomenon was found in the electronic structure
of grain boundaries in Ni;Si and Ni;Al [44].

This effect becomes especially important for the boundaries, which can have two
types of structure with approximately the same energy values if the first type has a
strongly distorted tetrahedral packing and the second one has a local configuration of
black lead type around some atoms. For example, such a situation can be observed in
silicon in the £11 {31 1} boundary with and without a reconstruction [45] and in the £33
{811} boundary [46].

Our calculations have shown that the excess energy of the =5 {210} boundary,
estimated in the framework of the density-functional theory based on data for the density
of electron states, is 460 = 40 erg cm 2. The calculation of its energy by the bond orbital
model gave the value of 1200 ergem™. Such a great difference between the results
obtained with the use of the self-consistent LMTO TB calculation and empirical methods
isrelated to the changes in the electron structure due to changes of atomic coordination,
which were not taken into account in the latter case. It points out the great significance
of electron system relaxation.
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4. Discussion

Our results for 25 {210} together with the data for Z5 {310} of Paxton et af [2] and
Kohyama et al [9] have not revealed any proper boundary states in the band gap.
Summarizing these results, we can expect a similar behaviour of all symmetric tilt (100}
boundaries in silicon. This assumption is based on the fact that structure units of Z5 (and
a single crystal) form the structure of all boundaries belonging to this class [20]. It
can cause the electrical passivity of these boundaries. It is true only for equilibrium
boundaries without any additional defects. The electron-beam-induced current (EBIC)
and transmission electron microscope (TEM) studies of the (100} tilt grain boundaries
with =5, 13, 25 [47, 48] have shown that the electrical activity of these boundaries was
caused by extrinsic dislocations or precipitates.

The problem of the existence of a correlation between the character of the local
distortions of the atomic structure and local characteristics of the electronic structure
has been disputable up to now [49, 50]. Our results have revealed the absence of an
unambiguous simple relationship of such a character. In particular, different types of
. atomic arrangement can cause similar effects in an electronic structure. For example,
atom O (figure 1) has a strong distortion of the angles between the bonds, but small
changes of the bond length. Atom 2 has a strong tension of the bond with atom 27, and
alow deviation of the angles between bonds. Despite this, the local electronic structures
are similar in both these positions, so the high sharp peaks (3 and 4, figure 3) of s-like
states are localized at atoms 0 and 2. At the same time, a relatively strong tension of the
bond on atom 5 (of 3.2%) causes another effect, i.e. the shift of the s peak in the direction
of high energies.

It should be noted that, analysing the local electronic structure at an atom in the
boundary, we must take into account the complex picture of the atomic structure. The
different types of distortions in the grain-boundary structure interact with each other
and so we cannot separate the influence of an angle distortion, bond tension, etc, on the
electronic structure. It is not an essential feature of grain boundaries, because the same
conclusion was drawn for the electronic states of amorphous semiconductors [27)]. This
ambiguity of the relationships between the atomic and electronic structures concerns
the quantitative redistribution of the density of states inside a valence band; therefore,
the aforementioned conclusions drawn on the principal character of the electronic
structure of (100) symmetric tilt boundaries remain true.

Appendix
All the potential parameters used in this work can be determined on the basis of the four
conventional potential parameters:
P = (‘bﬁ') = -®,/39,
_ (Sfw)®*! Dy -1
NS+ 1) Dy I+1

Cep _Bult1+Dy
PR @1+ 1+ Dy,

Al/zﬁ(_s/ﬂlﬂ(ﬂ)”z Du=Dy
PTr+n \2 T4 14 Dy
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where
D,=8®,/0, Dy=Sd,/P,

w is the mean radius of the Wigner-Seitz cell, § is the radius of the atomic sphere, and
D, =PUE,,S)

d

I GO

m’ = —q)(E,,,I')

=5

The screened potential parameters can be determined as

[PFEN ™ = A(E-C+7i— o [PF(E)™ = (E -~ VR)/(TF)"”
where

Vi =C = 8/(vi — a)) Tf = A /(v — a))?

Vi =Cu— Ap/lys — (PH)7'] rﬁEAH/[YH_(P{JL)"[F

of =1/(Vf — E.;).

Coefficients C’,‘,’, in equation (15) are determined by
Cir = _"E (lW 2+ (‘bm)“g i17).

Here N, is the number of atoms in the unit cell of the same type as atom R; ¢ are the
coord:natc. vectors of such atoms

The coefficients W o and BY 4 are involved in the one-centre expansion of the
wavefunction:

WE(r) = 2 (Wip(r) + B, ®ru(r)]
L
and can be obtained from

Wi =bi + 0% 2 Stenbus

RL

RL = z SRLR L'bR 'L

RL

where bf{;;’. are the eigenvectors of the valence state j of the electron.
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