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Abstract. The electronic structure of the E5 (2 10) grain boundary in silicon was calculated 
by the first-principles, self-consistent, linearmuffin-tinorbitals/tight-bindin% representation 
method on the basis of the atomic structure simulated by the bond orbital model. The 
calculated electronic structure is found to have localized and resonant defect states, which 
are caused by thedistortionsoftheatomicstructure at thegrain boundary. Sharplylocalized 
states in the pseudo-gap were observed along with splitting of s states and dissipation of s p  
mixed states. A rehybridization effect was revealed at the grain boundary on the atoms with 
strongly distorted bonds. However. there are no states inside the band gap. The increase of 
the s-state occupancy in comparison with the p-state occupancy appeared on the atoms with 
strongly distorted bonds at the grain boundary. The relationship between local electronic 
structure and local arrangement of the atoms is discussed. 

1. Introduction 

Recently there has been increasing interest in the investigation of the atomic and 
electronic grain-boundary structure in semiconductors. Most such investigations have 
been executed with the use of the semi-empirical tight-binding methods. For example, 
the recursion method was used for the calculation of the electronic structure of the E3 
{Z 1 I} and ES (3 1 0) grain boundaries in silicon [ 1, 21 and the E3 {Z 1 I} boundary in 
germanium [3]. A number of grain boundaries in silicon were investigated with the use 
of theextended Huckel methodin the cluster approach [4,5]. The Chadi semi-empirical 
tight-binding method [6,7] in the framework of the supercell technique was applied for 
the 23 {Z 1 1) [8], 2.5 {3 1 O }  [9] and X9 {Z 1 1) [lo] boundaries in silicon. 

It isveryconvenient tousesuchmethodsfor the treatmentofasystem withacomplex 
and large unit cell, owing to the simplicity of the computational procedure. However, 
they have certain deficiencies; in particular, the free parameters of the method are fitted 
by suitable propertiesof aperfectcrystal. In thecaseof adistortedlattice, aconsiderable 
change in the electron density is possible in the crystal and such an approach becomes 
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rather approximate. Moreover, it is obvious that the semi-empirical method can be 
used for the structure defect calculation of experimentally well studied crystals only. 
Therefore, a more general and correct investigation of the electronicstructure of crystal 
defects is provided by the a6 initio methods of solid-state theory. 

In these schemes the only input parameters are the atomic number and crystal 
structure, in contrast with the semi-empirical approach. However, the use of the con- 
ventional a6 initio methods, such as the Korringa-Kohn-Rostoker (KKR) method [ll] 
and augmented plane-wave (APW) one [12], for the investigation of complicated defect 
structures is limited to a small size of supercell because of the extremely large computer 
resources needed. The modern, generalized linear muffin-tin orbital (LMTO) Green 
function method for the calculation of the interface electronic structure was proposed 
in [13-151. Unfortunately, the application of this technique is limited by the con- 
sideration of the join between two phases with an ideal structure at the interface. The 
effects connected with the relaxation of the atomic structure at the interphase boundary 
are omitted. Thus, obviously, it is impossible to use it for grain boundaries, where the 
real atomic structure of the interface is important. 

An attempt to use the first-principles method based on the density-functional theory 
(DFT) within the local-density approximation (LDA) in the frameworkof the local orbital 
basis and the norm-conserving pseudopotential [16] was made in [17] for the Z9 {22 1) 
grain boundary in silicon. However, this method provides for an inadequate description 
of the fundamental gap of an ideal crystal, causing a significant underestimation of both 
the direct and band-gap width 116, 171. This disadvantage is critical in the case of the 
investigation of the electronic structure of grain boundaries, where the behaviour of the 
electronic states in this region is most important. Moreover. this method estimates the 
bond energy in an ideal crystal of silicon with an error of 10-17% (dependingon the type 
of orbital basis set) [16], which can cause a significant error in the determination of the 
grain-boundary energy. 

Oneof themost perspicaciousmethodsforthecalculationsoftheelectronicstructure 
of defects is the LMTo method in the tight-binding representation (LMTOTB method) 
developed by Andersen [18, 19). This method provides for: (i) a high speed of cal- 
culations that allows one to carry out a first-principles investigation of complicated 
objects; (ii) a high precision in the determination of the parameters of the band structure 
(accuracy of about 1% of the bandwidth) and cohesive energy; and (iii) a minimal 
thickness of the supercells of an artificial crystal for the imposition of periodicity in the 
directionnormal to the boundaryplane. Thisispossible becauseofthestrong localization 
of LMTOTB basis functions. 

In this paper we present the first application of an efficient self-consistent a6 inirio 
technique based on the LMTOTB method using a supercell geometr); for the calculation 
of the electronic structure at relaxed interfaces on the example of the 25 {2 10) grain 
boundary in silicon. We have chosen this boundar); as an object for our investigations 
for the following reasons. Firstly, there is no reliable information on its electronic 
structure. Secondly, this boundary together with the 25 {3 10) boundary, investigated 
in[2,9],determines basalstructureunitsin theclassofsymmetric(100) boundaries[20]. 
So. its electronicstructure may be characteristicofthe essential featuresofboundariesof 
this class. 

2. Method 

2.1.  The atomic structlire simulation 
The determination of the equilibrium atomic geometry at a grain boundary requires a 
value of the total energy calculation such that methods with a high computational 
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complexity cannot be used. So we use a simple bond orbital model for the computer 
simulation of the atomicstructure 121-231. This modelpossessesan ability for high speed 
of computations and provides for a realistic description of the grain-boundary structure 
in silicon [24]. The computer simulation of the E5 {2 10) atomic structure included two 
stages. In the first stage the rigid-body translation was determined, i.e. the mutual 
position of the grains corresponding to the minimum energy was obtained. The relative 
coordinates of the individual atoms were not changed. The component of the rigid-body 
translation in the direction normal to the boundary was equal to 0.02 nm with an accuracy 
of 0.005 nm. In the direction of the tilt axes (1 00) it was equal to 0.042 4 0.005 nm. It is 
necessary to note that the shift in the boundary plane disturbs the initial symmetry of 
the boundary plane. 

After a rigid-body translation, an atomic relaxation was carried out by a static 
procedure with the use of the method of conjugated gradients [25].  The thickness of 
the operational volume, in which the changes of individual atomic coordinates were 
calculated, in the direction normal to the boundary plane was equal to 4 nm. We have 
used the conjunction with the (2 10) planes of an ideal crystal, which can be shifted by 
an interaction with the operational volume, as the boundary condition in this direction. 
In the boundaryplane, periodicboundaryconditions[25] were used. We haveconsidered 
the same periodicity for the grain-boundary structure as that for the {2 10) planes in a 
single crystal. So, we did not take into account the possibility of reconstruction of grain- 
boundary structure with increase in the periodicity. The relaxation was completed when 
the maximum value of the gradients of the atomic energy became less than 0.1 eV nm-'. 

Thesimulatedatomicstructure isshown in figure 1. It ischaracterized by the absence 
of dangling bonds, the maximum bond tension of 3.9% between atom 2 and atom 2', 
and the maximum deviation of the angle between the interatomic bonds at atom 0 (of 
19.5") from the single-crystal value. 

2.2. The method of electronic structure calculation 
The first-principles calculation of the electronic structure of a solid can be divided into 
two parts, i.e. the solution of the Schrodinger equation with a definite crystalline 
potential to determine the energy band structure and eigenfunctions, and the con- 
struction of the crystalline potential. The development of the crystalline potential for a 
many-electron system is a rather complicated task, and only the density-functional 
formalism based on the Hohenberg and Kohn theorem [26] in practice gives an accept- 
able method of self-consistent solution of this problem. It is a formidable computational 
task and for objects with a complex atomic structure the problem of optimization of the 
algorithm for its solution becomes very urgent. In particular, the choice of the most 
suitable type of basis wavefunctions is the way to optimize the computational algorithm. 
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The basis functions of the LMTOTB method provide for the most effective solution of 
this problem because of their linearity (independence on energy) and short range, which 
is essential for the calculation of the electron structure of defects by the supercell 
techniquc. These extremely compact basis functions were obtained by an exact trans- 
formation of the conventional LMTO basis functions [19]. They decrease exponentially 
with relative interatomic distance instead of as the inverse power in the case of the LMTO 
basis functions. The size of the supercells, modelling thestructureofcrystals with defects, 
can be decreased to a great extent, so the first-principles self-consistent calculation of 
the electronic structure of defects is possible with the use of the LMTOTB method. 

It is convenient to use the atomic-sphere approximation (ASA) in the framework of 
the LMTO scheme. I n  this approach, each atom is surrounded by a sphere with volume 
equal to that of the Wigner-Seitz cell, and it  is assumed that all space can be filled with 
these spheres, the overlapping of spheres of different atoms being neglected. The latter 
means that. effectively, there are no interstitial regions. In practice. the errors in the 
determination of the electron energy in the framework of the ASA does not exceed 1% 
of the width of the corresponding band. However, this approximation is valid only in 
the case of close-packed structures (FCC, BCC and HCP). For the calculation of electronic 
structure in the case of open structures, such as the diamond structure, it  is necessary to 
introduceso-calledemptyspheres in the interstitial sitesofacrystalline latticein addition 
to spheres containing ions. These spheres contain no ion cores, bul have some electron 
charge, as the self-consistency is achieved. Thus, the application of empty spheres is the 
practical tool for the more correct consideration of electron density outside the atomic 
spheres [19]. For crystals with a diamond structure, the empty spheres are placed at the 
tetrahedral void sites, so a close-packed structure of the BCC type is formed. Whereas 
the ASA serves well for crystalline silicon [19], this is not necessarily so for the grain 
boundaries because of the distorted and more open structure than in a perfect crystal. 
Taking this fact into account, we have adjusted the positions and radii of empty spheres 
in the grain-boundary region so that the excessvolume was taken into consideration and 
large sphere overlaps were avoided. Sphere radii at a grain boundary change in the range 
of (0.999-1,06)Rsi only (where Rsi is the empty sphere radius in an ideal lattice) because 
of a small distortion on the investigated boundary, atomic sphere radii being constant. 
Therefore, the obtained structure is like the closely packed one and in this case the ASA 
could be quite accurate. A similar approximation (but without sphere radii adjustment) 
was used in [U] for amorphous silicon, which is characterized by distortions of the bond 
length (~3.1%) and deviations of the angles between the bonds (=17.7') similar to the 
maximum ones in the structure of the investigated boundary. I t  has been shown that 
even thisapproach providesfor the descriptionoftheelectronicpropertiesofamorphous 
silicon quite well. Also, this approximation (but without the self-consistent procedure) 
has been used for the study of the structure and energy of the E5 11 00) grain boundary 
in copper (281. Hencc we expect our approach to be correct enough for the calculation 
of the grain-boundary electronic structure. 

In the framework of the LMTO TB ASA method, the basis functions are constructed 
from solutions of the Schrodinger equation inside the Wigner-Seitz spheres. Thc mini- 
mal basisset foracovalent crystal in thismethodcontainss,panddorbitalsat the atomic 
sites and s and p orbitals at the interstitial sites. However, it was shown [29] that it is 
possible to use a smaller basis set to calculate one-electron epergies and wavefunctions 
without a significant decrease in accuracy if higher partial waves were taken into account 
by a procedure equivalent to Lowdin partitioning or bIock perturbation theory [30]. 
This procedure allows one to reduce the size of the matrices that are diagonalized and 
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therefore decrease the computational time by an order of magnitude in comparison with 
the conventional LMTO method, which is extremely important for the calculation of the 
electronic structure of grain boundaries. 

We now briefly describe the practical scheme that we used for the calculation of the 
grain-boundary electronic structure in silicon. A detailed description of the LMTO TB 
method is given in [IS, 191. The basis orbital in the TB representation, xgL(r - R ) ,  
centred at lattice site R and with the abbreviation L = {L m} for the angular momentum 
( I )  and azimuthal (m) quantum numbers, is a superposition of the conventional LMTO, 
and is given by the one-centre expansion: 

where IxgL)p extends over all space, while I Q R L )  and are non-zero only in their 
own atomic spheres. Here QRL(rR) = QRl(rR) YL(?,), where QRl is the regular solution of 
the radial Schrodinger equation in the sphere for the liied but arbitrary energy E,,, 
chosen at the centre of interest; YL are the spherical harmonics; rR = ( r  - R )  and 
r, = lr,I, The QRL is normalized to unity in its sphere as 

( Q L I Q L ) = J Q  Qr(r )QL(r )dr=  lQl(r)jZr2dr= 1 (2) I,' 
where s is the radius of an atomic sphere. 

The @gL is defined as a superposition of QRL and its energy derivative function 
&RL: 

+ g L ( r R )  = bRL(rR) + QRL(rR)o&. (3) 
The values of the potential parameter 0% (see appendix) were chosen to make the tight- 
binding muffin-tin orbital energy derivative vanish. 

The matrix h f L  (here and in the following, in a matrix notation the subscript R is 
dropped) in (1) was determined so that the TB LMTO is continuous and differentiable on 
the sphere: 

The values Pf and Pf are the potential parameters (diagonal matrices), which are 
related to the conventional ones as given in the appendix. 

The screened structure matrix SfL is determined through the Dyson equation: 

where SO,, is the conventional canonical structure matrix [lS, 311, which is Hermitian 
and independent of the scale of the structure; wL is a diagonal matrix with elements 
usually independent of R ,  and CY, = 0 for I >  2. The set of 'screening numbers' i s  found 
by the trial-and-error method 1191 in such a way that the localization of S f L  is the best: 
a; = 0.348485, mP = 0.053030, ad = 0.010714. 

Now, to obtain a down-folded basis it is necessary only to go to energy-dependent 
screening coefficients P(S). Using the subscript notation L for the lower partial waves 
and H for the higher partial waves (in the case of silicon H = p for the empty spheres 
and H = d for the atomic sphere), it is specified by [29] that 

heL = -Pf( j f ) - '  + (kf)-'/*SfL(k)-'/*, (4) 

seL = gL + s~LruLsfL = WL'[(CY,~ -so L I. )-I - f f L l a , l  ( 5 )  

P L  = @L P H W  = [ p m l - '  (6)  
where P i ( E )  is a conventional potential function [IS]. The transformation of the one- 
centre expansion (1) to the P(E) representation from the original a is given by sub- 
stituting the structure matrix S f L  by the structure matrix Sfyo defined as 
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SfLE) = S& + SrHFEH(E)SEL 
(7) 

(8) 

(9) 

(10) 

S#f) = P%(E)F$,(E)S5, 

F&,(E) = [Pa(E) - SE,]-’. 
where F&(E) is the ‘higher-block Green function’ 1291: 

Equation (4) in p ( E )  representation is 

and in this case the basis function is found to be 

h @ ( e  - EI @ - I  +(lj‘1)-1/2Sfl(o ’ D  
LL - -PL( L )  LL (PL)-l’2 

( -1) 1 IxP))=IQ?L)+ IbE)hfY’ + I @ ~ ) o 1 / 2 S W m .  
Here rfi is the potential parameter (see appendix). The energy dependence in 
expressions (6)-(10) may be omitted by fixing E = E”,. 

Hamiltonian and overlap matrices can be obtained from (10) using the condition 
E = EVH in the form: 
O f L  = ( I  + h L o t ) ( o f h $  + I )  + h f L p L h f L  + (P~) - ’ /2 s f , ( l / r s , )SkL(PL)  ‘e -In 

(11) 
and 
HfL = hfL  + h f L o e h f L  + ( I  + h&of)E,L(OThfL +I) + hfLE,Lp,hfL 

+ (e) -l/*sf,(vP,/rfi)sBL(P;l) -10 (12) 

#(E))” I f 0. (13) 

where lis the unit matrix, V& andp, are defined in the appendix. One should note that 
functions defined by (10) are not the LMTO, because 

a 
E ”  

However, the accuracy of the determination of one-electron energies of lower partial 
waves is of the same order as that in the LMTOTB method. The inaccuracy for the higher 
partial waves is slightly more; however, the error does not exceed ( E  - E.)*. A detailed 
consideration of this problem is given in [29]. 

It is necessary to determine the charge density at each step of the self-consistent 
calculation in the framework of DFT. It is possible to calculate it with the use of the 
spherically symmetric part obtained from the partial-wave expansion in the Wigner- 
Seitz (ws) sphere. Such an approach is convenient because it provides for a sufficient 
accuracy and the full, non-spherically averaged charge density has so far been difficult 
to represent throughout the cell and is not needed during a self-consistent calculation. 
T ~ ~ A S A  totalenergy normallydeviatesfrom the proper totalenergyonly by hundredths 
of a rydberg 1191. 

The distribution of the charge density of the valence electrons in the atomic sphere 
R ,  i.e. pR(r), in this approach can be described as 

1 EF 

W )  = lo ~Nw(E)%I(~ ,  E )  dE (14) 
I 

whereQ?R,isthesolutionoftheradialSchrodingerequationfortheenergy E;and2NRl(E) 
is the local partial density of states determined by 

where S2 is the volume of the unit cell; and E,@) is the one-electron energy of state j a t  
point k .  The expressions for the coefficients Czl are given in the appendix. 
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Table 1. The main characteristics of the electronic band structure of single-cwstal silicon, 
obtained with the use of different exchange-correlation potentials. 

Type of potential" Valence 
Band-gap band Width of direct 

Variant Atomic Empty width width gapat rpoint, 
no. spheres spheres ( e v )  ( e v )  rlr - r:, ( e v )  

1 VPZ VPZ 0.52 12.28 3.52 
2 VB,, VB, 0.63 12.21 3.50 

4 vBH VSI 1.14 12.03 3.52 

Experimental data [38] 1.17 12.5 -C 0.6 3.4 

3 V ,  vs, 0.74 12.21 3.54 

V,, Perdew-Zunger exchange-correlation potential. 
V,,, Barth-Hedin exchange-correlation po[ential. 
V,  Slaterexchange-correlation potential with coefficient e = 0.7. 

Thedetermination ofthe exchange-correlation potential is averyimportant problem 
in the calculation of the electronic structure of semiconductors. The point is that, if one 
investigates a semiconductor electronic structure in the framework of Dm, then the well 
known problemofa dielectricgapappears. This problem consistsof the underestimation 
of the band-gap width by about 4@60%, which arises because of the substitution of the 
non-local self-energy operator by the local exchange-correlation potential [32,33]. The 
contemporary state of theory does not allow one to determine unambiguously the form 
of the local exchange-correlation potential most suitable for the calculation of the 
electronic properties of solids. The only way to choose the potential type is via com- 
parison of the calculated results with the experimental data. A number of approximations 
for the exchange-correlation potential have been proposed, and each of them is correct 
only for a definite type of electron charge density distribution. The open structure of 
silicon is characterized by a strongly non-uniform distribution of charge density. It 
changes rapidly in the atomic spheres and becomes approximately uniform and small in 
the empty spheres. So, it is reasonable to use different types of exchange-correlation 
potential for the atomic spheres and empty spheres, and a uniform distribution of 
electron density with small values is well described by a Slater-type potential [34]. One 
shouldnote that similar approaches have been used for the investigation of the electronic 
structure of intermetallic compounds [35] and semiconductors [36]. 

We have carried out test calculations of the electronic band structure of a perfect 
crystal of silicon (with lattice constant equal to5.43 A) using different forms of the local 
exchange-correlation potential for both the atomic spheres and empty spheres. We 
continued the iterative calculations until self-consistency with 6 5 x eV was 
reached is the total energy per unit cell). The integration was carried out by the 
method of tetrahedra [37] through the 50 k-points of the 1/48th irreducible part of the 
Brillouin zone. The results of the test calculations are given in table 1. 

The levels of the one-electron energy are seen to be strongly sensitive to the form of 
the exchange-correlation potential. Consideration of the results obtained with the 
variants 1 and 2 of the exchange-correlation potentials (table 1) shows that the width of 
the direct energy gap at the point r is in good agreement with the experimental value, 
while the estimation of the band gap has significant discrepancies in comparison with 
theexperimentaldata (the underestimation of the band-gap width is55.6and46.2% for 
variants 1 and 2 of the exchange-correlation potential, respectively). 
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Table 2. One-electron energy of single-crystal silicon at the characteristic points of the 
Brillouin zone relative to [he energyof the top of the valence band (r; point). 

,. , , ~  , , , , ,  
Present work Theory 1411 Experiment 1381 

Point lev) ( ev )  ( W  

r, - 12.03 -11.99 -12.5+0.6 
rIs  3.52 2.50 3.4 
r; 3.77 3.21 4.2 

-7.93 -7.84 - XI" 
X,. -2.79 -2.88 -2.9 i O . 2  
XI, 1.23 0.55 1.3 
L; -9.62 -9.64 -Y.3~t0.4 

., " ,"". , ,,",.,,.,W. ,.., *,.I, ...,, , . , ,  ,,., 

L,, -6.93 -7.04 -6.7 3 0.2 
L, -1.03 -1.21 -1.2 i 0.2 

L: 3.85 3.26 4.15 1 0 . 1  
L,, 1.77 1.41 2.1 +0.15 

Band-gap 
width (eV) 1.14 0.41 1.17 

,~ ... , , 

The application of the Perdew-Zunger [39] or Barth-Hedin [40] exchange-cor- 
relation potentials for the atomic spheres along with the Slater potential 1341 for the 
empty spheres (variants 3 and 4 in table 1, respectively) leads to a significant decrease 
in the error of the estimation of the band-gap width. In the case of variant 4 (table 1) the 
error amounts to 2.5%, which represents a good f i t  with the experimental data. 

This effect is caused by the increase~of the potential inside the empty spheres owing 
to the increase of the correlation part in the exchange-correlation potential, if the 
Perdew-Zunger or Barth-Hedin potential are substituted by the Slater one. As a result, 
the potential barrier between the atomic spheres and empty spheres increases and this 
effect causes localization of wavefunctions inside atomic spheres and both narrowing 
and lowering of electronic bands. 'The opposite effect in the empty spheres is negligible. 
As a result, the width of the valence band decreases, it displaces in the direction of low 
energies and thus the width of the hand gap increases. The decrease in the valence band 
width is rather small, and all the obtained values correspond to the experimental 
estimations. It isnecessarytonotethat theeffectoftheappIicationoftheSlaterpotentia1 
for the empty spheres in variant 3 of the potential set (table 1) is lower than in variant 4. 
Hence, the application of the combination of different exchange-correlation potentials 
for the atomic spheres and empty spheres provides for the increase of the accuracy of 
the band-structure determination for silicon owing to a more correct description of the 
electron density distribution in the unit cell. 

The one-electron energies in silicon in several points of the Brillouin zone obtained 
with the application of the Barth-Wedin exchange-correlation potentials for the atomic 
spheres along with the Slater potential for the empty spheres are given in table 2. The 
energy of the state r h  (the top of the valence band) is taken as the zeroth energy. The 
results of the presented work are seen to be in better agreement with the experimental 
data than that obtained in [41] with the use of an exchange-correlation potential of 
Gaspar-Kohn-Sham type [42]. The calculation of the cohesive energy per atom with 
the use of these exchange-correlation potentials has given us the value of 4.8 eV, which 
corresponds to =3.7% overestimation in comparison with the experimental data, 

The self-consistent calculation of the grain-boundary electron structure was carried 
out up to the same level of self-consistency as for the test calculation with the Barth- 
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Figure 2. The 112 irreducible part of the Brillouin 
zone ofthe supercell used for calculation of the elec- 

11, &/0(4/5, - Id5,O); III,2~/a(6/5,0,0). 

, 
< , , tronicsfructureofthe~5{220) boundary: I , ( O , O , O ) ;  

. g J , g k x  ,- 

. 
Hedin exchange-correlation potentials for the atomic spheres and the Slater potential 
with LY = 0.7 for the empty spheres. 

In the supercell method the periodicity normal to the boundary plane is imposed in 
addition to the two-dimensional periodicity in the boundary plane. The supercell used 
for the calculation of the grain-boundaryelectron structure had an inversion centre and 
contained two oppositely misoriented E5 (2 10) grain boundaries spaced by 16 atomic 
planes. Thus, a fully periodic structure was obtained. The Brillouin zone of the supercell 
obtained has the shape of a hexagonal prism. The irreducible part of this Brillouin zone 
is shown in figure 2. Choosing the thickness of the supercell in the present work we took 
into account the value of the radius of vanishing of the basis functions of the LMTO TB 
method. For silicon, the LMTOTB basis orbital extends to third-nearest neighbours [19], 
and we choose the thickness of the supercell so that the grain-boundary cores in it were 
separated by a region of the silicon lattice with thickness exceeding two radii of the third 
coordination sphere; thereby one ensures the absence of n region of mutual influence of 
grain boundaries in the supercell. 

The integration was carried out through the 29 k-points of the 112 irreducible part of 
the Brillouin zone (figure 2) in the plane k, = 0 by the triangle method with linear 
interpolation, because the preliminary test calculation had shown a negligibly small 
dispersion along the k, direction (about 10-'Ryd). The test calculation with a varying 
number of k-points has shown that the integration error does not exceed lo-? Ryd. 
Therefore, we believe that the calculation of the main electronic properties of a grain 
boundary was carried out accurately enough. 

3. Results 

The local density of states is important for the understanding of numerous properties. 
In particular, being a local characteristic for an electron structure it is more sensitive to 
different local distortions of the regular crystal lattice order and enables us to carry out 
a more detailed description of localized and resonant defect states in comparison with 
energy band structure. In figure 3 the data for the local density of states at atomsLL3,5 
and 8 are presented. Though the rigid-body translation disturbs the symmetry of the 
boundaryplane, theatomsin pairs 1 and 1-,2and2-,etc(figure 1) becameinequivalent, 
but the local density of states on them differs insignificantly. In figure 3 the data for the 
atoms on the side of the boundary characterized by the strongest distortions of the 
atomic coordination are presented. 

The followingfeaturesofthelocaldensity ofstatesin the valence band were observed: 

(i) A splitting of the speak occurs into peaks 1 and 2 (figure 3) with a shift of peak 2 
in the direction of increasing energy and peak 1 in the opposite direction. The splitting 
of the s peak is the strongest on atom 0. This effect is weaker on the neighbouring atoms 
and obviously exists mainly due to the interaction with atom 0. 



2784 A V Nikolaeua et a1 

N (states I Ryd atom I 
ta I 

-0.2 0 0.2 0.4 0.6 0.8 
E ( R y d l  

N (states I Ryd atom1 
t lbl 

-0.2 0 0. 2 0.4 0.6 0.8 
E ( R y d l  

N ls ta tes  I Ryd atom I 

IC I 

-0 .2 0 0.2 0.4 0.6 0.8 
E LRydl 



Electronic structure of the Z5 {2I 0} grain boundary in Si 2785 

N (states I R y d  atom 1 

I ( d )  

-0.2 0 0 . 2  0. 4 0.6 0.8 
E I R y d l  

N [states I Ryd atom 1 

le1 

E I R y d )  
N 1states.l Ryd atom) 

( f l  
10 

-0.2 0 0.2 0 .4  0.6 0.8 
E I R y d )  

Figure 3. Local densities of states N on atoms 0 (a). 1 (b) ,  2 (c ) ,  3 (d) .  5 (e) and 8 ( f ) ,  as 
numbered in figure 1. Dotted curves show the density of states in the perfect crystal. 
Numbered state peaks are shown by arrows. 
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Figure 4. Interfacial electronic structure near the 
pseudo-gapofasingle crystal. The projectiansof the 
bulk bands are shaded. 

(ii) Sharp and high s-type peaks (peaks 3 and 4, figure 3) appear in the region of the 
minimum of the state density related to a pseudo-gap in a single crystal (figure 4). In 
figure 4 the fragment of the hand structure of the examined supercell in this energy 
region is shown. We can see two defect states with energy equal to that of peaks 3 and 
4. The state of peak 3 is situated closer to the edge of the pseudo-gap (to the electron 
state of a single crystal) and has a lower energy dispersion. 

(iii) Adissipation of thes-p hybridizedpeakisseen along with asignificant reduction 
of the maximum density of states. In this energy region low s-p peaks were formed up 
to the low-energy edge of the p peak of a single crystal. According to [27], such a 
character of the distribution of the density of states is also typical for amorphous silicon. 

(iv) A number of small sharp peaks are observed in the valence band, including 
peaks with p symmetry near the top of the band (peaks 5 and 6, figure 3). 

All effects observed in the local density of states are decreasing, moving away from 
the grain boundary, So, atom number 8 has almost the same density of states as a single 
crystal with a slight difference. It seems to be related to the different number of points 
used for integration through the Brillouin zone in the cases of the grain boundary and 
single crystal. 

We analysed the dependence of the state density with fixed energy values versus the 
distance from the grain boundary. Figure 5 shows that the states of peaks 3 and 4 are 
localized defect states. Their state densityrapidlydecreases with distance from the atoms 
on which they are formed. The state of peak number 3 is localized on atom number 0. 
This atom is characterized by the highest angle deviation of the bonds from the single- 
crystal value. Peak number 4 is associated with atoms number 2 and 2-, which have the 
strongest distortion of the bond length with the neighbours in comparison with the ideal 
bond length. 

The heights of peaks 1, 2, 5 and 6 decrease slightly oscillating with distance from 
the grain boundary, Such behaviour is characteristic of resonance states. The spatial 
decrease of the heights of peaks 1, 2, 5 and 6 agrees with the positions of the cor- 
respondingstatesin the energyregionof thefilledpart ofthesingle-crystalvalence band. 
The state of peak 5 is localized on atoms 3 and 3T, and peak 6 has highest intensity at 
atoms 2 and 2-. 

The charge distribution at the Si atoms is shown in figure 6. The variation in this 
quantityshould be agoodmeasure ofthecharge fluctuation in agrain-boundary structure 
from one atom to another because the atomic sphere radii do not change [27]. At the 
same time, such a comparison of the charges in the empty spheres does not have any 
meaning because their radii are different. It is seen that the deviation of the charge value 
at the atoms of the grain boundary from that of a single crystal is about ?O.le, where e 
is the electron charge. A positive charge exists on the Si atoms in a single crystal owing 
to the transference of a part of the electron charge from atoms to the states of empty 
spheres. An excess negative value was found on atoms 0 , l -  and 1 with a value of the 
bond tension of 2.1% and a strong distortion of the angles between the bonds. In 
contrast, at the atoms 2,2Z, 5 and 5-  with a strong tension of bonds the lack of electron 

~~~ ~ _ _ ~  . . . ~ ~ . ~  ~~~~~~~~~~~~~~~~~~ ~ 
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Figure 5. The dependence of the local density of states N with fixed energy values E on the 
positions of the atoms in the grain-boundary structure: ( a )  peak 1. (0) E = -0.225 Ryd, 
(0) E = -0.20 Ryd. (+) E = -0.175 Ryd: (b)  peak 3, (0) E = 0.07 Ryd. (+) E = 
0.0725 Ryd,(O)E = 0.W5 Ryd;(c)pe?.k4,(0)€ = 0.09 Ryd, (+)E = 0.095 Ryd,(O)E = 
O.lORyd;(d)peak5,(0)E=0.555Ryd.(t)E=0.560Ryd,(O)E=0.565Ryd;(e)peak 
6, (0) E = 0.585 Ryd, (t) E = 0.590 Ryd. (0) E = 0.595 Ryd. NA = number of atom 
(figure 1) .  

charge is observed. The maximum deviation of the charge from the single-crystal value 
isobsewedat atom5, whichhastensionofthe bond withatom2of 3.2%. Thedependence 
ofchargesofthe atomsondistance from the boundaryisslightlyasymmetric. It isrelated 
to the asymmetry of the atomic structure caused by the rigid-body translation in a 
boundary plane. 

The charge values almost converge to the perfect crqstal value at the eighth plane. 
On the basis of the dependence of local state densities and charge value on distance from 
the grain boundary, we can say that the region of the electronic distortions associated 
with this boundary is about 12-14 atomic planes (&7 atomic planes on each side of the 
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Figure6.Thechargesof theatomicspheresQS,in the 
grain-boundary structure in terms of electron charge 
e. The broken line shows the charge of Si atomic 
spheres in a single crystal. NA =number of atom 
(figure I ) .  

Table 3. The ratio of occupancy values of the p states and s stales ifp!,) on atoms at the E5 
(2 1O)grain boundary.' 

Numbers 
ofatoms 0 1 2 3 4 5 6 7 8 

fD!, 1.57 1.63 1.50 1.55 1.62 1.51 1.58 1.60 L63 
- ~ ,,, ,, , 

Jpi,inasin~ecrystalisequalto 1.64 

grain junction plane), or about 1 nm. This value is more than the geometrical boundary 
thickness, but much less than the electrical thickness of electrically active boundaries 

The formation of additional defect s states at the boundary leads to a change of 
hybridization state of several atoms. The ratio of the occupancy of states of p symmetry 
to the occupancy of s-symmetry states (fpir) on atoms 0-8 is given in table 3. 

It is seen that both the excess charge on atom 0 and the lack of charge on atoms 2 and 
5 were caused mainly due to the changes in the relative occupancy of the s-symmetry 
orbitals. Uniform changes of occupancy of the p and s states take place only on atom 1 ,  
A similar behaviour of thef,!, was observed in the 23 {2 1 I} grain boundary in silicon 
[2]. This behaviour confirms the assumption that the bonding of atoms in the region of 
a highly distorted structure is provided by the enhanced occupancy of the spherically 
symmetric s orbitals [ a ] .  The same phenomenon was found in the electronic structure 
of grain boundaries in Ni3Si and Ni3AI [44]. 

This effect becomes especially important For the boundaries, which can have two 
types of structure with approximately the same energy values if the first type has a 
strongly distorted tetrahedral packing and the second one has a local configuration of 
black lead type around some atoms. For example, such a situation can be observed in 
silicon in the 211 {3 1 1) boundary with and without a reconstruction 1451 and in the 233 
{S 1 l} boundary [46]. 

Our calculations have shown that the excess energy of the 2 S  12 10) boundary, 
estimatedin theframeworkofthedensity-functional theorybasedondataforthedensity 
ofelectron states, is460 * 40 ergcm-2. The ealculationof itsenergy by the bondorbital 
model gave the value of 1200 erg cm-*. Such a great difference between the results 
obtained with the use of the self-consistent LMTO TB calculation and empirical methods 
is related to the changes in the electron structure due to changesof atomic coordination, 
which were not taken into account in the latter case. It points out the great significance 
of electron system relaxation. 

1431. 
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4. Discussion 

Our results for 25 {210} together with the data for 2 3  (3 IO} of Paxton et a1 [2] and 
Kohyama et al [9] have not revealed any proper boundary states in the band gap. 
Summarizing these results, we can expect a similar behaviour of all symmetric tilt (1 00) 
boundariesinsilicon. This assumption is based on the fact that structure units of 25 (and 
a single crystal) form the structure of all boundaries belonging to this class [ZO]. It 
can cause the electrical passivity of these boundaries. It is true only for equilibrium 
boundaries without any additional defects. The electron-beam-induced current (EBIC) 
and transmission electron microscope (TEM) studies of the (1 00) tilt grain boundaries 
with Z5, 13,25 [47,48] have shown that the electrical activity of these boundaries was 
caused by extrinsic dislocations or precipitates. 

The problem of the existence of a correlation between the character of the local 
distortions of the atomic structure and local characteristics of the electronic structure 
has been disputable up to now 149,501. Our results have revealed the absence of an 
unambiguous simple relationship of such a character. I n  particular, different types of 
atomic arrangement can cause similar effects in an electronic structure. For example, 
atom 0 (figure 1) has a strong distortion of the angles between the bonds, but small 
changes of the bond length. Atom 2 has a strong tension of the bond with atom 2-, and 
a low deviation of the angles between bonds. Despite this, the local electronic structures 
are similar in both these positions, so the high sharp peaks (3 and 4, figure 3) of s-like 
states are localized at atoms 0 and 2. At the same time, a relatively strong tension of the 
bondon atom 5 (of 3.2%) causesanother effect, i.e. the shift of the speak in the direction 
of high energies. 

It should be noted that, analysing the local electronic structure at an atom in the 
boundary, we must take into account the complex picture of the atomic structure. The 
different types of distortions in the grain-boundary structure interact with each other 
and so we cannot separate the influence of an angle distortion, bond tension, etc, on the 
electronic structure. It is not an essential feature of grain boundaries, because the same 
conclusion was drawn for the electronic states of amorphous semiconductors [27]. This 
ambiguity of the relationships between the atomic and electronic structures concerns 
the quantitative redistribution of the density of states inside a valence band; therefore, 
the aforementioned conclusions drawn on the principal character of the electronic 
structure of (1 00) symmetric tilt boundaries remain true. 

Appendix 

All the potential parameters used in this work can be determined on the basis of the four 
conventional potential parameters: 

= ( 6 2 )  "I = - @"1/3@"1 '. 

y1 = 2(21+ 1) Dd/ + I + 1 
(S/O)'+' D,, - 1 
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where 
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D,/ = SQP://@*p,, Di l  = S&L//Qvl  

OJ is the mean radius of the Wigner-Seitz cell, Sis the radius of the atomic sphere, and 

a”/ = @ I @ ” ,  S) 

a 
Q;, =-@(E,,  

ar r ) l , . i  

Here Nq is the number of atoms in the unit cell of the same type as atom R; 9 are the 
coordinatc vectors of such atoms. 

The coefficients W$ and E$ are involved in the one-centre expansion of the 
wavefunction: 

W$(r) [N’$@RL(r )  f B$LkRL(r)I 
L 

and can be obtained from 

W2L = b2L f 0% 2 S,”mmL.b$rL~ 

& = S;LR,Lob$Lt 

R’ L’ 

R’L’ 

where b$,L, are the eigenvectors of the valence statejof the electron 
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